Counting Salem Numbers of Arithmetic Hyperbolic 3-Orbifolds

Author:

Belolipetsky MikhailORCID,Lalín MatildeORCID,Murillo Plinio G. P.ORCID,Thompson LolaORCID

Abstract

AbstractIt is known that the lengths of closed geodesics of an arithmetic hyperbolic orbifold are related to Salem numbers. We initiate a quantitative study of this phenomenon. We show that any non-compact arithmetic 3-dimensional orbifold defines $$c Q^{1/2} + O(Q^{1/4})$$ c Q 1 / 2 + O ( Q 1 / 4 ) square-rootable Salem numbers of degree 4 which are less than or equal to Q. This quantity can be compared to the total number of such Salem numbers, which is shown to be asymptotic to $$\frac{4}{3}Q^{3/2}+O(Q)$$ 4 3 Q 3 / 2 + O ( Q ) . Assuming the gap conjecture of Marklof, we can extend these results to compact arithmetic 3-orbifolds. As an application, we obtain lower bounds for the strong exponential growth of mean multiplicities in the geodesic spectrum of non-compact even dimensional arithmetic orbifolds. Previously, such lower bounds had only been obtained in dimensions 2 and 3.

Funder

CNPq

FAPERJ

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

FRQNT

Max-Planck-Institut für Mathematik

Korea Institute for Advanced Study

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiplicities in the Length Spectrum and Growth Rate of Salem Numbers;Bulletin of the Brazilian Mathematical Society, New Series;2024-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3