Abstract
AbstractFor a complex analytic function, the exceptional divisor of the jacobian blow-up is of great importance. In this short paper, we show what a lemma from the thesis of Lazarsfeld tells one about the structure of the projections of this exceptional divisor into the base space.
Funder
Northeastern University USA
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. Kashiwara, M.: Systems of Microdifferential Equations, volume 34 of Progress in Mathematics. Birkhäuser, 1983. Notes and translation by T. M. Fernandes from Systèmes d’equations micro-differentielles, Dépt. de Math., Univ. Paris-Nord 8, (1978)
2. Lazarsfeld, R.: Branched Coverings of Projective Space. PhD thesis, Brown University, 1980
3. Lazarsfeld, R.: Positivity in Algebraic Geometry I, volume 48 of Ergebnisse der Mathematik. Springer-Verlag, (2004)
4. Lê, D.T., Massey, D.: Hypersurface singularities and milnor equisingularity. Pure Appl. Math. Quart. 2(3), 893–914 (2006). (special issue in honor of Robert MacPherson 's 60th birthday)
5. Lê, D.T., Mebkhout, Z.: Variétés caractéristiques et variétés polaires. C.R. Acad. Sc. Paris 296, 129–132 (1983)