Abstract
AbstractEnsuring high power conversion efficiency, partially or completely replacing Pt electrodes with inexpensive materials is one of the important development directions of dye-sensitized solar cells (DSSCs). In this work, we have developed a three-component (MWCNTs, carbon black and graphite) carbon (tri-carbon) electrode material for DSSC devices combined with the advantages of high electron transfer kinetics of MWCNTs, plentiful catalytic sites in crystal edges of carbon black and superior electrical conductivity and catalytic activity of graphite. Using a tri-carbon electrode, a Pt electrode, and two N719-sensitized photoanodes, a parallel tandem dye-sensitized solar cells are assembled obtaining a high PCE of 10.26% (Voc = 0.70 V, Jsc = 19.99 mA/cm2, FF = 73.33%). It opens up a new avenue for the development of low-cost and high-performance DSSCs.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献