Author:
Liu Shiling,Gong Kun,Li Wei,Liu Dongzhi,Zhou Xueqin
Abstract
AbstractMolecular engineering is a crucial strategy for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs). Despite the common use of the donor–π bridge–acceptor architecture in designing sensitizers, the underlying structure–performance relationship remains not fully understood. In this study, we synthesized and characterized three sensitizers: MOTP-Pyc, MOS2P-Pyc, and MOTS2P-Pyc, all featuring a bipyrimidine acceptor. Absorption spectra, cyclic voltammetry, and transient photoluminescence spectra reveal a photo-induced electron transfer (PET) process in the excited sensitizers. Electron spin resonance spectroscopy confirmed the presence of charge-separated states. The varying donor and π-bridge structures among the three sensitizers led to differences in their conjugation effect, influencing light absorption abilities and PET processes and ultimately impacting the photovoltaic performance. Among the synthesized sensitizers, MOTP-Pyc demonstrated a DSSC efficiency of 3.04%. Introducing an additional thienothiophene block into the π-bridge improved the DSSC efficiency to 4.47% for MOTS2P-Pyc. Conversely, replacing the phenyl group with a thienothiophene block reduced DSSC efficiency to 2.14% for MOS2P-Pyc. Given the proton-accepting ability of the bipyrimidine module, we treated the dye-sensitized TiO2 photoanodes with hydroiodic acid (HI), significantly broadening the light absorption range. This treatment greatly enhanced the short-circuit current density of DSSCs owing to the enhanced electron-withdrawing ability of the acceptor. Consequently, the HI-treated MOTS2P-Pyc-based DSSCs achieved the highest power conversion efficiency of 7.12%, comparable to that of the N719 dye at 7.09%. This work reveals the positive role of bipyrimidine in the design of organic sensitizers for DSSC applications.
Publisher
Springer Science and Business Media LLC