On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model

Author:

Stead Alexander D.ORCID,Wheat PhillORCID,Greene William H.ORCID

Abstract

AbstractLatent class and finite mixture stochastic frontier models have been proposed as a means of allowing either for technological heterogeneity or more flexible distributions of noise and inefficiency. As in the wider literature on latent class and finite mixture models, we are interested in class enumeration, particularly testing against homogeneity. We apply a modified likelihood ratio test for homogeneity in a stochastic frontier setting, based on established results for non-Gaussian latent class and finite mixture models, and provide evidence from Monte Carlo experiments which suggest the applicability of results regarding a modified likelihood ratio test to the stochastic frontier setting. We demonstrate an application to testing a model with a contaminated normal noise term against a model with a normally distributed noise term, finding that the former is preferred, with significant implications for efficiency prediction.

Publisher

Springer Science and Business Media LLC

Subject

Economics and Econometrics,Social Sciences (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3