Kinetic field theory for cosmic structure formation
-
Published:2022-08-08
Issue:11
Volume:45
Page:737-799
-
ISSN:0393-697X
-
Container-title:La Rivista del Nuovo Cimento
-
language:en
-
Short-container-title:Riv. Nuovo Cim.
Author:
Konrad Sara,Bartelmann Matthias
Abstract
AbstractWe apply kinetic field theory to non-linear cosmic structure formation. Kinetic field theory decomposes the cosmic density field into particles and follows their trajectories through phase space. We assume that initial particle momenta are drawn from a Gaussian random field. We place particular emphasis on the late-time, asymptotic behaviour on small spatial scales of low-order statistical measures for the distribution of particles in configuration and velocity space. Our main result is that the power spectra for density and velocity fluctuations in ensembles of particles freely streaming along Zel’dovich trajectories asymptotically fall off with wave number k like $$k^{-3}$$
k
-
3
for $$k\rightarrow \infty $$
k
→
∞
, irrespective of the cosmological model and the type of dark matter assumed, with the exponent set only by the number of spatial dimensions. This conclusion remains valid for density-fluctuation power spectra if particle interactions are taken into account in a mean-field approximation. We also show that the bispectrum of freely streaming particles falls off asymptotically like $$k^{-11/2}$$
k
-
11
/
2
under the same general conditions.
Funder
Ruprecht-Karls-Universität Heidelberg
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference86 articles.
1. M.F. Skrutskie, R.M. Cutri, R. Stiening, M.D. Weinberg, S. Schneider, J.M. Carpenter, C. Beichman, R. Capps, T. Chester, J. Elias, J. Huchra, J. Liebert, C. Lonsdale, D.G. Monet, S. Price, P. Seitzer, T. Jarrett, J.D. Kirkpatrick, J.E. Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt, R. Light, E.L. Kopan, K.A. Marsh, H.L. McCallon, R. Tam, S. Van Dyk, S. Wheelock, The two micron all sky survey (2MASS). AJ 131(2), 1163–1183 (2006). https://doi.org/10.1086/498708 2. Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J.-P. Bernard , M. Bersanelli, P. Bielewicz, J.J. Bock, J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R.C. Butler, E. Calabrese, J.-F. Cardoso, J. Carron, A. Challinor, H.C. Chiang, J. Chluba, L.P.L. Colombo, C. Combet, D. Contreras, B.P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J.-M. Delouis, E. Di Valentino, J.M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T.A. Enßlin, H.K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, A.A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R.T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K.M. Górski, S. Gratton, A. Gruppuso, J.E. Gudmundsson, J. Hamann, W. Handley, F.K. Hansen, D. Herranz, S.R. Hildebrandt, E. Hivon, Z. Huang, A.H. Jaffe, W.C. Jones, A. Karakci, E. Keihänen, R. Keskitalo, K. Kiiveri, J. Kim, T.S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J.-M. Lamarre, A. Lasenby, M. Lattanzi, C.R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P.B. Lilje, M. Lilley, V. Lindholm, M. López-Caniego, P.M. Lubin, Y.-Z. Ma, J.F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P.G. Martin, M. Martinelli, E. Martínez-González, S. Matarrese, N. Mauri, J.D. McEwen, P.R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M.-A. Miville-Deschênes, D. Molinari, L. Montier, G. Morgante, A. Moss, P. Natoli, H.U. Nørgaard-Nielsen, L. Pagano, D. Paoletti, B. Partridge, G. Patanchon, H.V. Peiris, F. Perrotta, V. Pettorino, F. Piacentini, L. Polastri, G. Polenta, J.-L. Puget, J.P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, C. Rosset, G. Roudier, J.A. Rubiño-Martín, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E.P.S. Shellard, C. Sirignano, G. Sirri, L.D. Spencer, R. Sunyaev, A.-S. Suur-Uski, J.A. Tauber, D. Tavagnacco, M. Tenti, L. Toffolatti, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B.D. Wandelt, I.K. Wehus, M. White, S.D.M. White, A. Zacchei, A. Zonca, Planck 2018 results. VI. Cosmological parameters. A &A 641, 6 (2020). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO] 3. D. Coe, K. Umetsu, A. Zitrin, M. Donahue, E. Medezinski, M. Postman, M. Carrasco, T. Anguita, M.J. Geller, K.J. Rines, A. Diaferio, M.J. Kurtz, L. Bradley, A. Koekemoer, W. Zheng, M. Nonino, A. Molino, A. Mahdavi, D. Lemze, L. Infante, S. Ogaz, P. Melchior, O. Host, H. Ford, C. Grillo, P. Rosati, Y. Jiménez-Teja, J. Moustakas, T. Broadhurst, B. Ascaso, O. Lahav, M. Bartelmann, N. Benítez, R. Bouwens, O. Graur, G. Graves, S. Jha, S. Jouvel, D. Kelson, L. Moustakas, D. Maoz, M. Meneghetti, J. Merten, A. Riess, S. Rodney, S. Seitz, CLASH: precise new constraints on the mass profile of the galaxy cluster A2261. ApJ 757(1), 22 (2012). https://doi.org/10.1088/0004-637X/757/1/22. arXiv:1201.1616 [astro-ph.CO] 4. M. Bartelmann, M. Limousin, M. Meneghetti, R. Schmidt, Internal cluster structure. Space Sci. Rev. 177(1–4), 3–29 (2013). https://doi.org/10.1007/s11214-013-9977-6. arXiv:1303.3285 [astro-ph.CO] 5. P.J.E. Peebles, Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. ApJ 263, 1–5 (1982). https://doi.org/10.1086/183911
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|