Stationary stochastic Navier–Stokes on the plane at and above criticality

Author:

Cannizzaro G.ORCID,Kiedrowski J.

Abstract

AbstractIn the present paper, we study the fractional incompressible Stochastic Navier–Stokes equation on $${\mathbb {R}}^2$$ R 2 , formally defined as $$\begin{aligned} \partial _t v = -\tfrac{1}{2} (-\Delta )^\theta v - \lambda v \cdot \nabla v + \nabla p + \nabla ^{\perp }(-\Delta )^{\frac{\theta -1}{2}} \xi , \qquad \nabla \cdot v = 0 \, , \end{aligned}$$ t v = - 1 2 ( - Δ ) θ v - λ v · v + p + ( - Δ ) θ - 1 2 ξ , · v = 0 , where $$\theta \in (0,1]$$ θ ( 0 , 1 ] , $$\xi $$ ξ is the space-time white noise on $${\mathbb {R}}_+\times {\mathbb {R}}^2$$ R + × R 2 and $$\lambda $$ λ is the coupling constant. For any value of $$\theta $$ θ the previous equation is ill-posed due to the singularity of the noise, and is critical for $$\theta =1$$ θ = 1 and supercritical for $$\theta \in (0,1)$$ θ ( 0 , 1 ) . For $$\theta =1$$ θ = 1 , we prove that the weak coupling regime for the equation, i.e. regularisation at scale N and coupling constant $$\lambda ={{\hat{\lambda }}}/\sqrt{\log N}$$ λ = λ ^ / log N , is meaningful in that the sequence $$\{v^N\}_N$$ { v N } N of regularised solutions is tight and the nonlinearity does not vanish as $$N\rightarrow \infty $$ N . Instead, for $$\theta \in (0,1)$$ θ ( 0 , 1 ) we show that the large scale behaviour of v is trivial, as the nonlinearity vanishes and v is simply converges to the solution of (0.1) with $$\lambda =0$$ λ = 0 .

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brownian Particle in the Curl of 2-D Stochastic Heat Equations;Journal of Statistical Physics;2024-01-28

2. Weak coupling limit of the Anisotropic KPZ equation;Duke Mathematical Journal;2023-11-01

3. The stationary AKPZ equation: Logarithmic superdiffusivity;Communications on Pure and Applied Mathematics;2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3