Sound and Noise Sources in Sonotubometry: An Investigation of Eustachian Tube Assessment

Author:

Nava Tobia SebastianoORCID,Nussbaumer Maximilian,Tysome James R.,Sutcliffe Michael P. F.

Abstract

AbstractThis research aims to enhance the understanding of the acoustic processes occurring during sonotubometry, a method used to assess the Eustachian tube (ET) function. Recent advancements in digital signal processing enable a more comprehensive data analysis. In this project, a silicone model of the ET was developed to systematically study the existing noise and sound sources. These measurements were then compared with recordings from human subjects. Three distinct ’noise sources’ were identified, which can influence the assessment of the ET opening using transmission measurements of the imposed signal: sound leakage from the speaker, a clicking noise at the initiation of ET opening, and rumbling/swallowing noise. Through spectral analysis, it was also possible to ascertain the spectral and temporal occurrence of these sound and noise types. The silicone model exhibited remarkable similarity to the healthy human ET, making it a robust experimental model for investigating the acoustics of sonotubometry. The findings underscore the significance of delving deeper into the analysed sound, as the noise occurring during sonotubometry can be easily misconstrued as an actual ET opening. Particularly, careful consideration is warranted when evaluating data involving clicking and swallowing noise.

Funder

Cambridge Hearing Trust

WD Armstrong Trust

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3