Development of a Head Acceleration Event Classification Algorithm for Female Rugby Union

Author:

Powell David R. L.ORCID,Petrie Freja J.,Docherty Paul D.,Arora Hari,Williams Elisabeth M. P.ORCID

Abstract

AbstractInstrumented mouthguards have been used to detect head accelerations and record kinematic data in numerous sports. Each recording requires validation through time-consuming video verification. Classification algorithms have been posed to automatically categorise head acceleration events and spurious events. However, classification algorithms must be designed and/or validated for each combination of sport, sex and mouthguard system. This study provides the first algorithm to classify head acceleration data from exclusively female rugby union players. Mouthguards instrumented with kinematic sensors were given to 25 participants for six competitive rugby union matches in an inter-university league. Across all instrumented players, 214 impacts were recorded from 460 match-minutes. Matches were video recorded to enable retrospective labelling of genuine and spurious events. Four machine learning algorithms were trained on five matches to predict these labels, then tested on the sixth match. Of the four classifiers, the support vector machine achieved the best results, with area under the receiver operator curve (AUROC) and area under the precision recall curve (AUPRC) scores of 0.92 and 0.85 respectively, on the test data. These findings represent an important development for head impact telemetry in female sport, contributing to the safer participation and improving the reliability of head impact data collection within female contact sport.

Funder

Economic and Social Research Council Wales Doctoral Training Partnership

Zienkiewicz Centre for Computational Engineering (ZCCE) Doctoral Scholarship, Faculty of Science and Engineering, Swansea University, Swansea, UK.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3