Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond
Author:
Funder
National Science Foundation
American Heart Association
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering
Link
https://link.springer.com/content/pdf/10.1007/s10439-022-02967-4.pdf
Reference133 articles.
1. Aggarwal, C. C. Neural Networks and Deep Learning: A Textbook. New York: Springer, 2018.
2. Alber, M., A. B. Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold, and E. Kuhl. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digital Med. 2(1): 1–11, 2019.
3. Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46(2):77–81, 2009.
4. Arzani, A. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? J. R. Soc. Interface 15(146):20180486, 2018.
5. Arzani, A., and S. Dawson. Data-driven cardiovascular flow modelling: examples and opportunities. J. R. Soc. Interface 18:20200802, 2021.
Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The feasibility of atrial Fibrillatory wave amplitude in predicting ablation outcomes in persistent atrial fibrillation;Journal of Electrocardiology;2024-09
2. Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges;AI;2024-08-29
3. A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data;International Journal for Numerical Methods in Biomedical Engineering;2024-08-28
4. Rapid prediction of wall shear stress in stenosed coronary arteries based on deep learning;Frontiers in Bioengineering and Biotechnology;2024-08-12
5. Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research;American Journal of Physiology-Heart and Circulatory Physiology;2024-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3