Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling

Author:

Paul K Thomas,Satpathy SK,Manna I,Chakraborty KK,Nando GB

Abstract

Abstract The Class F fly ash has been subjected to high energy ball milling and has been converted into nanostructured material. The nano structured fly ash has been characterized for its particle size by using particle size analyzer, specific surface area with the help of BET surface area apparatus, structure by X-ray diffraction studies and FTIR, SEM and TEM have been used to study particle aggregation and shape of the particles. On ball milling, the particle size got reduced from 60 μm to 148 nm by 405 times and the surface area increased from 0.249 m2/gm to 25.53 m2/gm i.e. by more than 100%. Measurement of surface free energy as well as work of adhesion found that it increased with increased duration of ball milling. The crystallite was reduced from 36.22 nm to 23.01 nm for quartz and from 33.72 nm to 16.38 nm for mullite during ball milling to 60 h. % crystallinity reduced from 35% to 16% during 60 h of ball milling because of destruction of quartz and hematite crystals and the nano structured fly ash is found to be more amorphous. Surface of the nano structured fly ash has become more active as is evident from the FTIR studies. Morphological studies revealed that the surface of the nano structured fly ash is more uneven and rough and shape is irregular, as compared to fresh fly ash which are mostly spherical in shape.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference19 articles.

1. B. Bhushan, in Springer Handbook of Nanotechnology (Springer-Verlag, Germany, 2004)

2. M.G. Lines, J. Alloys Compd., doi:10.1016/j.jallcom.2006.02. 082 (2007)

3. A.S. Edelstein, in Encyclopedia of Materials: Science and Technology, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssiere (Elsevier Science and chnology, 2006) p. 5916

4. Koch C C: Rev. Adv. Mater. Sci.. 2003, 5: 91. COI number [1:CAS:528:DC%2BD3sXpvFyjtrg%3D] COI number [1:CAS:528:DC%2BD3sXpvFyjtrg%3D]

5. G. Chow, L.K. Kurihara, in Nanostructured materials: Science and Technology, ed. by C.C. Koch (William Andrew Inc. N.Y., 2002)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3