Author:
Zhai Chuanxin,Zhang Hui,Du Ning,Chen Bingdi,Huang Hai,Wu Yulian,Yang Deren
Abstract
Abstract
We developed a novel one-pot polyol approach for the synthesis of biocompatible CdSe quantum dots (QDs) using poly(acrylic acid) (PAA) as a capping ligand at 240°C. The morphological and structural characterization confirmed the formation of biocompatible and monodisperse CdSe QDs with several nanometers in size. The encapsulation of CdS thin layers on the surface of CdSe QDs (CdSe/CdS core–shell QDs) was used for passivating the defect emission (650 nm) and enhancing the fluorescent quantum yields up to 30% of band-to-band emission (530–600 nm). Moreover, the PL emission peak of CdSe/CdS core–shell QDs could be tuned from 530 to 600 nm by the size of CdSe core. The as-prepared CdSe/CdS core–shell QDs with small size, well water solubility, good monodispersity, and bright PL emission showed high performance as fluorescent cell labels in vitro. The viability of QDs-labeled 293T cells was evaluated using a 3-(4,5-dimethylthiazol)-2-diphenyltertrazolium bromide (MTT) assay. The results showed the satisfactory (>80%) biocompatibility of as-synthesized PAA-capped QDs at the Cd concentration of 15 μg/ml.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献