Correct Use of Oscillating-Cup Viscometers for High-Temperature Absolute Measurements of Newtonian Melts

Author:

Nunes Valentim M. B.ORCID,Lourenço Maria José V.ORCID,Nieto de Castro Carlos A.ORCID

Abstract

AbstractOscillating-body viscometers have been used in the past to measure, in an absolute way, the viscosity of molten materials at high temperatures, from salts, metals, alloys, and semiconductors. However, the simultaneous use of basic or incomplete mathematical models, to mimic the experiment, and less careful engineering solutions for the design and operation of the instruments, led in the past to high discrepancies between the data obtained in several laboratories. This was caused by the incorrect use of the method’s theory, less accurate solutions of the complex solutions, that involve solid state and fluid mechanics, and unreal instrument design. From these types of viscometers, oscillating-cup instruments have had the most success in measuring viscosity at high temperatures, and they will be the object of this paper. It was written as a resource for workers interested in transport properties of materials when considering its use for the absolute measurement of fluids viscosity in their work, or in judging the results of others' work when comparing data with their own. The paper starts with the most accurate theory of the method’s description, followed by a discussion of its validity, application to instrument design, and consequent operation. Several constraints were identified and recommendations were made to minimize the effects of failing to satisfy them. Finally, a discussion about the uncertainty budget calculations for a real experiment is made. If all these points are followed in the design and operation of the instrument, results in global uncertainties Ur(η) between 0.02 and 0.04 are possible to obtain, up to high temperatures. If these constraints are not satisfied, erroneous measurements can be made, making comparisons and quality assessment difficult.

Funder

Fundação para a Ciência e a Tecnologia

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Torsional Quartz-Crystal Viscometer;International Journal of Thermophysics;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3