Author:
Sang Lan,Zhou Zhengying,Luo Shizheng,Zhang Yicui,Qian Hongjie,Zhou Ying,He Hua,Hao Kun
Abstract
Abstract
Objective
Antineoplastic agent-induced systolic dysfunction is a major reason for interruption of anticancer treatment. Although targeted anticancer agents infrequently cause systolic dysfunction, their combinations with chemotherapies remarkably increase the incidence. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a potent in vitro model to assess cardiovascular safety. However, quantitatively predicting the reduction of ejection fraction based on hiPSC-CMs is challenging due to the absence of the body's regulatory response to cardiomyocyte injury.
Methods
Here, we developed and validated an in vitro-in vivo translational platform to assess the reduction of ejection fraction induced by antineoplastic drugs based on hiPSC-CMs. The translational platform integrates drug exposure, drug-cardiomyocyte interaction, and systemic response. The drug-cardiomyocyte interaction was implemented as a mechanism-based toxicodynamic (TD) model, which was then integrated into a quantitative system pharmacology-physiological-based pharmacokinetics (QSP-PBPK) model to form a complete translational platform. The platform was validated by comparing the model-predicted and clinically observed incidence of doxorubicin and trastuzumab-induced systolic dysfunction.
Results
A total of 33,418 virtual patients were incorporated to receive doxorubicin and trastuzumab alone or in combination. For doxorubicin, the QSP-PBPK-TD model successfully captured the overall trend of systolic dysfunction incidences against the cumulative doses. For trastuzumab, the predicted incidence interval was 0.31–2.7% for single-agent treatment and 0.15–10% for trastuzumab-doxorubicin sequential treatment, covering the observations in clinical reports (0.50–1.0% and 1.5–8.3%, respectively).
Conclusions
In conclusion, the in vitro-in vivo translational platform is capable of predicting systolic dysfunction incidence almost merely depend on hiPSC-CMs, which could facilitate optimizing the treatment protocol of antineoplastic agents.
Funder
National Natural Science Foundation of China
111 Incubation Project
Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Organic Chemistry,Pharmaceutical Science,Pharmacology,Molecular Medicine,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献