High Speed Impact Testing of UHMWPE Composite Using Orthogonal Arrays

Author:

Hannah T.ORCID,Martin V.,Ellis S.,Kraft R. H.

Abstract

Abstract Background Ultra high molecular weight polyethylene composites are fiber based composites used in armor applications. While some characterization has been conducted experimentally, this study varies multiple parameters simultaneously to investigate material response under a wide range of conditions. Objective This work focuses on characterizing the response of Dyneema® HB26 hard laminate composites under high-speed impacts to examine the influence of plate diameter, clamping pressure, and plate spacing on target performance. Additionally, micro Computer Tomography scans are used to nondestructively evaluate the damage evolution in the targets. Methods These scan results are used in concert with more traditional armor performance metrics to evaluate the effect of various parameters using the method of orthogonal array analysis. This technique allows for multiple variables to be investigated in the same test series, saving time and budget while still providing quality results across a range of variables and variable values. Results We conclude that of the parameters investigated, the plate spacing parameter has the largest effect on performance, followed by the plate diameter. Bolt torque was found to not have a significant impact on results, indicating that an edge clamping pressure is not critical to material response. Additionally, by examining the high resolution scans, we can quantify the damage with an effective damage angle and that this angle is a good predictor of performance. Conclusion Finally a damage theory involving the effective bending strength of the plates is discussed as an explanation for all of the results observed in this test series.

Funder

Los Alamos National Laboratory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3