Parameter identification for symbolic regression using nonlinear least squares

Author:

Kommenda Michael,Burlacu Bogdan,Kronberger Gabriel,Affenzeller Michael

Abstract

AbstractIn this paper we analyze the effects of using nonlinear least squares for parameter identification of symbolic regression models and integrate it as local search mechanism in tree-based genetic programming. We employ the Levenberg–Marquardt algorithm for parameter optimization and calculate gradients via automatic differentiation. We provide examples where the parameter identification succeeds and fails and highlight its computational overhead. Using an extensive suite of symbolic regression benchmark problems we demonstrate the increased performance when incorporating nonlinear least squares within genetic programming. Our results are compared with recently published results obtained by several genetic programming variants and state of the art machine learning algorithms. Genetic programming with nonlinear least squares performs among the best on the defined benchmark suite and the local search can be easily integrated in different genetic programming algorithms as long as only differentiable functions are used within the models.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Language Model Crossover: Variation through Few-Shot Prompting;ACM Transactions on Evolutionary Learning and Optimization;2024-09-05

2. Characterising the Double Descent of Symbolic Regression;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

3. Minimum variance threshold for epsilon-lexicase selection;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

5. Function Class Learning with Genetic Programming: Towards Explainable Meta Learning for Tumor Growth Functionals;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3