1. J. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STAN-CS-90-1314 (Dept. of Computer Science, Stanford University, 1990)
2. P.-A. Kamienny, G. Lample, S. Lamprier, M. Virgolin, Deep generative symbolic regression with Monte-Carlo-tree-search (2023). 2302.11223
3. T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, KDD ’16 (ACM, New York, 2016), pp.785–794. https://doi.org/10.1145/2939672.2939785
4. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016)
5. G. Squillero, Artificial evolution in computer aided design: from the optimization of parameters to the creation of assembly programs. Computing 93, 103–120 (2011)