Effects of land surface temperatures on vegetation phenology along urban–rural local climate zone gradients

Author:

Xie JingORCID,Li Xinwei,Chung Lamuel Chi Hay,Webster Christopher John

Abstract

Abstract Context Urbanization and local urban climate have multiple impacts on vegetation phenology in urban and suburban areas. Understanding these effects and their interactions with the surface urban heating effect remains limited. Objective We employed a time series of Earth observation data to analyze land surface phenology (LSP) dynamics and related environmental drivers in the highly urbanized Pearl River Delta (PRD) region. Methods First, local climate zone (LCZ) maps were generated from Earth observation datasets of 2000 and 2019. Second, LSP (i.e., start, end, and length of season) were extracted from vegetation indices for 2000–2019. Thirdly, land surface temperature (LST) was used as an explanatory variable based on the LCZ of cities. Finally, interannual trends of LSP and their association with LST were analyzed, depending on the distance gradient of vegetation to compact high-rise buildings. Results Urban surface characteristics showed that LSP in regions dominated by compact and high-rise urban areas presented significant spatiotemporal variation at the start and end of season than those dominated by open, mid-rise, and low-rise areas. The impacts of spring and autumn LST in the daytime on LSP were slightly more substantial than those in the nighttime. The association of decreasing spring LST in the daytime with a delayed start of season is especially pronounced in urban domains. Conclusions The results indicate that vegetated areas adjacent to urban domains presented greater spatiotemporal dynamics than suburban and rural regions. Our study emphasizes the dependence of spatiotemporal changes in vegetation phenology on the effects of urban surface warming.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3