Pointwise monotonicity of heat kernels

Author:

Alonso-Orán DiegoORCID,Chamizo Fernando,Martínez Ángel D.,Mas Albert

Abstract

AbstractIn this paper we present an elementary proof of a pointwise radial monotonicity property of heat kernels that is shared by the Euclidean spaces, spheres and hyperbolic spaces. The main result was discovered by Cheeger and Yau in 1981 and rediscovered in special cases during the last few years. It deals with the monotonicity of the heat kernel from special points on revolution hypersurfaces. Our proof hinges on a non straightforward but elementary application of the parabolic maximum principle. As a consequence of the monotonicity property, we derive new inequalities involving classical special functions.

Funder

Programa Severo Ochoa

Ministerio de Ciencia, Innovación y Universidades

European Research Council

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference38 articles.

1. Andersson, D.: Estimates of the Spherical and Ultraspherical Heat Kernel. Master’s thesis, Chalmers University of Technology, Sweden (2013)

2. Chavel, I.: Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL (1984). Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk

3. Cheeger, J., Yau, S.T.: A lower bound for heat kernel. Commun. Pure Appl. Math. 34, 465–480 (1981)

4. Nowak, A., Sjögren, P., Szarek, T.Z.: Sharp estimates of the spherical heat kernel. Journal de Mathématiques Pures et Appliquées 129, 23–33 (2019)

5. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry Amsterdam Publisher. North-Holland Pub, Co (1975)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffusion means in geometric spaces;Bernoulli;2023-11-01

2. Existence and symmetry of periodic nonlocal-CMC surfaces via variational methods;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3