D’Atri spaces and the total scalar curvature of hemispheres, tubes and cylinders

Author:

Csikós BalázsORCID,Elnashar Amr,Horváth Márton

Abstract

AbstractCsikós and Horváth proved in J Geom Anal 28(4): 3458-3476, (2018) that if a connected Riemannian manifold of dimension at least 4 is harmonic, then the total scalar curvatures of tubes of small radius about an arbitrary regular curve depend only on the length of the curve and the radius of the tube, and conversely, if the latter condition holds for cylinders, i.e., for tubes about geodesic segments, then the manifold is harmonic. In the present paper, we show that in contrast to the higher dimensional case, a connected 3-dimensional Riemannian manifold has the above mentioned property of tubes if and only if the manifold is a D’Atri space, furthermore, if the space has bounded sectional curvature, then it is enough to require the total scalar curvature condition just for cylinders to imply that the space is D’Atri. This result gives a negative answer to a question posed by Gheysens and Vanhecke. To prove these statements, we give a characterization of D’Atri spaces in terms of the total scalar curvature of geodesic hemispheres in any dimension.

Funder

European Research Council

Hungarian Scientific Research Fund

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference13 articles.

1. Abbena, E., Gray, A., Vanhecke, L.: Steiner’s formula for the volume of a parallel hypersurface in a Riemannian manifold. Ann. Scuola Norm Sup. Pisa. Cl. Sci. 8(3), 473–493 (1981)

2. Chen, B.-Y., Vanhecke, L.: Differential geometry of geodesic spheres. J. Reine Angew. Math. 325, 28–67 (1981)

3. Csikós, B., Horváth, M.: Harmonic manifolds and the volume of tubes about curves. J. Lond. Math. Soc. 94(1), 141–160 (2016)

4. Csikós, B., Horváth, M.: Harmonic manifolds and tubes. J. Geom. Anal. 28(4), 3458–3476 (2018)

5. Gheysens, L., Vanhecke, L.: Total scalar curvature of tubes about curves. Math. Nachr. 103, 177–197 (1981)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3