Performance–energy trade-offs of deep learning convolution algorithms on ARM processors

Author:

Dolz Manuel F.,Barrachina Sergio,Martínez Héctor,Castelló Adrián,Maciá Antonio,Fabregat Germán,Tomás Andrés E.

Abstract

AbstractIn this work, we assess the performance and energy efficiency of high-performance codes for the convolution operator, based on the direct, explicit/implicit lowering and Winograd algorithms used for deep learning (DL) inference on a series of ARM-based processor architectures. Specifically, we evaluate the NVIDIA Denver2 and Carmel processors, as well as the ARM Cortex-A57 and Cortex-A78AE CPUs as part of a recent set of NVIDIA Jetson platforms. The performance–energy evaluation is carried out using the ResNet-50 v1.5 convolutional neural network (CNN) on varying configurations of convolution algorithms, number of threads/cores, and operating frequencies on the tested processor cores. The results demonstrate that the best throughput is obtained on all platforms with the Winograd convolution operator running on all the cores at their highest frequency. However, if the goal is to reduce the energy footprint, there is no rule of thumb for the optimal configuration.

Funder

Agencia Estatal de Investigación,Spain

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Agencia Estatal de Investigación

Universitat Jaume I

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DLAS: A Conceptual Model for Across-Stack Deep Learning Acceleration;ACM Transactions on Architecture and Code Optimization;2024-09-02

2. VLSI-Friendly Filtering Algorithms for Deep Neural Networks;Applied Sciences;2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3