Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning

Author:

Abdelkhalek Ahmed,Mashaly Maggie

Abstract

AbstractNetwork intrusion detection systems (NIDS) are the most common tool used to detect malicious attacks on a network. They help prevent the ever-increasing different attacks and provide better security for the network. NIDS are classified into signature-based and anomaly-based detection. The most common type of NIDS is the anomaly-based NIDS which is based on machine learning models and is able to detect attacks with high accuracy. However, in recent years, NIDS has achieved even better results in detecting already known and novel attacks with the adoption of deep learning models. Benchmark datasets in intrusion detection try to simulate real-network traffic by including more normal traffic samples than the attack samples. This causes the training data to be imbalanced and causes difficulties in detecting certain types of attacks for the NIDS. In this paper, a data resampling technique is proposed based on Adaptive Synthetic (ADASYN) and Tomek Links algorithms in combination with different deep learning models to mitigate the class imbalance problem. The proposed model is evaluated on the benchmark NSL-KDD dataset using accuracy, precision, recall and F-score metrics. The experimental results show that in binary classification, the proposed method improves the performance of the NIDS and outperforms state-of-the-art models with an achieved accuracy of 99.8%. In multi-class classification, the results were also improved, outperforming state-of-the-art models with an achieved accuracy of 99.98%.

Funder

Science and Technology Development Fund

German University in Cairo

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3