A memory scheduling strategy for eliminating memory access interference in heterogeneous system

Author:

Fang JuanORCID,Wang Mengxuan,Wei Zelin

Abstract

AbstractMultiple CPUs and GPUs are integrated on the same chip to share memory, and access requests between cores are interfering with each other. Memory requests from the GPU seriously interfere with the CPU memory access performance. Requests between multiple CPUs are intertwined when accessing memory, and its performance is greatly affected. The difference in access latency between GPU cores increases the average latency of memory accesses. In order to solve the problems encountered in the shared memory of heterogeneous multi-core systems, we propose a step-by-step memory scheduling strategy, which improve the system performance. The step-by-step memory scheduling strategy first creates a new memory request queue based on the request source and isolates the CPU requests from the GPU requests when the memory controller receives the memory request, thereby preventing the GPU request from interfering with the CPU request. Then, for the CPU request queue, a dynamic bank partitioning strategy is implemented, which dynamically maps it to different bank sets according to different memory characteristics of the application, and eliminates memory request interference of multiple CPU applications without affecting bank-level parallelism. Finally, for the GPU request queue, the criticality is introduced to measure the difference of the memory access latency between the cores. Based on the first ready-first come first served strategy, we implemented criticality-aware memory scheduling to balance the locality and criticality of application access.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3