Black holes with synchronised Proca hair: linear clouds and fundamental non-linear solutions

Author:

Santos Nuno M.ORCID,Benone Carolina L.,Crispino Luís C.B.,Herdeiro Carlos A.R.,Radu Eugen

Abstract

Abstract Recent studies have made key progress on the black hole/solitonic solutions of the Einstein-Proca system. Firstly, fully non-linear dynamical evolutions of the Kerr black hole superradiant instability, triggered by a Proca field, have shown the formation of a new equilibrium state, a spinning black hole with synchronised Proca hair. Secondly, non-linear evolutions of spinning Proca stars have established that they are dynamically stable, unlike their scalar cousins. Thirdly, separability of the Proca equation on the Kerr background has been achieved. Motivated by these results, in this paper we reconsider Kerr black holes with synchronised Proca hair. The separability of the Proca equation on the Kerr background allows us to examine the stationary Proca clouds in greater detail, in particular their dependence on the different quantum numbers. These stationary clouds occur at a set of existence lines in the Kerr parameter space, from which the black holes with synchronised Proca hair bifurcate. We construct the domain of existence of these black holes, comparing the fundamental states missed in the original study with the first excited states and with the cousin scalar model, giving illustrative examples of Kerr-like and non- Kerr-like BHs. In the vanishing event horizon limit, these hairy black holes connect to the fundamental states of spinning Proca stars, which include the dynamically stable solutions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proca stars in wormhole spacetime;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. Compact objects with primary hair in shift and parity symmetric beyond Horndeski gravities;Physical Review D;2024-07-19

3. Proca in an Expanding Universe;Fortschritte der Physik;2024-07-07

4. Spinning Proca-Higgs balls, stars and hairy black holes;Journal of Cosmology and Astroparticle Physics;2024-07-01

5. The imitation game reloaded: effective shadows of dynamically robust spinning Proca stars;Journal of Cosmology and Astroparticle Physics;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3