Abstract
Abstract
In order to predict the cosmological abundance of dark matter, an estimation of particle rates in an expanding thermal environment is needed. For thermal dark matter, the non-relativistic regime sets the stage for the freeze-out of the dark matter energy density. We compute transition widths and annihilation, bound-state formation, and dissociation cross sections of dark matter fermion pairs in the unifying framework of non-relativistic effective field theories at finite temperature, with the thermal bath modeling the thermodynamical behaviour of the early universe. We reproduce and extend some known results for the paradigmatic case of a dark fermion species coupled to dark gauge bosons. The effective field theory framework allows to highlight their range of validity and consistency, and to identify some possible improvements.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference137 articles.
1. Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys. 641 (2020) A1 [arXiv:1807.06205] [INSPIRE].
2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
3. J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].
4. B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].
5. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献