Holographic measurement in CFT thermofield doubles

Author:

Antonini StefanoORCID,Grado-White BriannaORCID,Jian Shao-KaiORCID,Swingle Brian

Abstract

Abstract We extend the results of arXiv:2209.12903 by studying local projective measurements performed on subregions of two copies of a CFT2 in the thermofield double state and investigating their consequences on the bulk double-sided black hole holographic dual. We focus on CFTs defined on an infinite line and consider measurements of both finite and semi-infinite subregions. In the former case, the connectivity of the bulk spacetime is preserved after the measurement. In the latter case, the measurement of two semi-infinite intervals in one CFT or of one semi-infinite interval in each CFT can destroy the Einstein-Rosen bridge and disconnect the bulk dual spacetime. In particular, we find that a transition between a connected and disconnected phase occurs depending on the relative size of the measured and unmeasured subregions and on the specific Cardy state the measured subregions are projected on. We identify this phase transition as an entangled/disentangled phase transition of the dual CFT system by computing the post-measurement holographic entanglement entropy between the two CFTs. We also find that bulk information encoded in one CFT in the absence of measurement can sometimes be reconstructed from the other CFT when a measurement is performed, or can be erased by the measurement. Finally, we show that a purely CFT calculation of the Renyi entropy using the replica trick yields results compatible with those obtained in our bulk analysis.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subsystem complexity and measurements in holography;Journal of High Energy Physics;2024-05-22

2. Entanglement phase transition in holographic pseudo entropy;Journal of High Energy Physics;2024-03-12

3. Holographic weak measurement;Journal of High Energy Physics;2023-12-22

4. Geometric quantum discord signals non-factorization;Journal of High Energy Physics;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3