Vaginal temperature of lactating cows during heat waves or normal summer day and effect of additional daily cooling treatments as heat load mitigation strategy

Author:

Vitali A.ORCID,Grossi G.ORCID,Lacetera N.ORCID

Abstract

AbstractThe vaginal temperature (VT) of lactating Holstein cows was monitored in not heat wave (NHW) and in heat wave (HW) summer days. Temperature humidity index (THI) was monitored and assigned to four classes of heat load (HL): THI < 68 null; 68 < THI < 74 low; 74 < THI < 80 moderate; and THI > 80 high.Five daily treatments consisting of continuous forced ventilation and sprayed water (1′ on follow by 5′ off) were assumed as control cooling protocol (CC) and compared with two experimental cooling protocols (EC) applied in the feed bunk and based on the CC plus two additional cooling treatments which lasted a total of 90′ (EC90) or 150′ (EC150) in the day.Sixty lactating cows were enrolled in two summer trials carried out in NHW or HW. In each trial, 10 cows were cooled by CC, 10 by EC90 and 10 by EC150. Twenty additional cows were monitored in a fall trail to have reference value of THI and VT under thermoneutral conditions (TN). Each trial lasted 72 h, and measurements of VT were carried out by intra-vaginal data loggers.The 33% of observed THI was within the high class of HL during HW, whereas THI never exceeded the upper threshold of moderate or low class of HL in NHW and TN, respectively.Multiparous and high yielding cows were more sensitive to HL, and the increased daily cooling treatments reduced heat load during hot conditions. However, during heat waves a certain degree of hyperthermia occurred even with intensive cooling management based on seven daily treatments.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3