Healthy environments for athleTes (HEAT): environmental conditions along a 90 km ultra-marathon event, South Africa

Author:

Havenga H.,Gharbi D.,Sewry N.,Language B.,Neumann F. H.,Finch J. M.,Hill T.,Boulter J.,Jordaan E.,Piketh S. J.,Schwellnus M.,Burger R. P.

Abstract

AbstractThis paper provides an overview of the HEAT (Healthy Environments for AthleTes) project, which aims to understand the impact of environmental conditions on athlete health and performance during major sporting events such as long-distance running, cycling, and triathlons. In collaboration with the SAFER (Strategies to reduce Adverse medical events For the ExerciseR) initiative, the HEAT project carried out a field campaign at the 2022 Comrades Marathon in the KwaZulu-Natal province of South Africa. The measurement campaign deployed seven weather stations, seven PM2.5 monitors and one spore trap along the 90 km route to capture spatially representative measurements of complex micro-climates, allergenic aerospora, and particulate matter exposure. The results indicate that runners were exposed to moderate risk heat stress conditions. Novel findings from this initial campaign shows elevated and potentially harmful PM2.5 levels at spectator areas, possibly coinciding with small fire events around the race day festivities. Our findings show values PM2.5 levels over the WHO 24-h guidelines at all stations, while 2000 µg/m3 at two stations. However, the lack of an acute exposure standard means direct health impacts cannot be quantified in the context of a sport event. The HEAT project highlights important aspects of race day monitoring; regional scale climatology has an impact on the race day conditions, the microclimatic conditions (pollution and meteorology) are not necessarily captured by proximity instruments and direct environmental measurements are required to accurately capture conditions along the route.

Funder

North-West University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3