Numerical study of the effect of aspect ratio on the entropy generation due to Rayleigh–Benard convection in 2D trapezoidal cavity

Author:

Bilal Sardar,Khan Noor Zeb,Akgül AliORCID

Abstract

AbstractThe investigation of entropic variations in the thermal transport mechanism produced by buoyantly driven temperature gradients has attracted significant attention because of excellent physical significance. Therefore, the prime consent to manipulate the current investigation is to explore the impact of change in the aspect ratio of the trapezoidal cavity in the optimization of the entropy phenomenon. After attaining motivation from its practical essence different entropies including thermal, viscous, and local are estimated. Additionally, global quantities such as average Bejan and Nusselt numbers calculated along with total entropy are measured against flow concerning parameters (aspect ratio (AR), Rayleigh number (Ra) and irreversibility ratio ($$\phi $$ ϕ )). Numerical experiments are performed by implementing a finite element approach using open-source software renowned as COMSOL Multiphysics. Before the accomplishment of the outcomes, confirmation of the numerical technique is assured by establishing grid sensitivity testing. Comparison of results between present and previous studies is also demonstrated. A wide range of involved sundry parameters varying from $${10}^{-4}\le \phi \le {10}^{-2}$$ 10 - 4 ϕ 10 - 2 , $${10}^{2}\le {\text{Ra}}\le {10}^{5} \; {\text{and}} \; 0.25\le {\text{AR}}\le 0.75$$ 10 2 Ra 10 5 and 0.25 AR 0.75 are accounted. It is concluded that by escalating the aspect ratio from 0.50 to 0.75, the magnitude of the local entropy enhances from 3370 to 3424. It is revealed that the highest value of viscous entropy that is, 45, is achieved at Ra = 105 and by keeping the aspect ratio of enclosure equal to 0.75, whereas, the thermal entropy approaches 2 for the same situation of parameters. The magnitude of the average Bejan number reaches unity at AR = 0.5 and Ra = 105, whereas for low and high aspect ratios it depicts a magnitude less than 1 for the same Rayleigh number.

Funder

Siirt University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3