Applications of machine learning methods in modeling various types of heat pipes: a review
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s10973-021-10603-x.pdf
Reference78 articles.
1. Payambarpour SA, Alhuyi Nazari M, Ahmadi MH, Chamkha AJ. Effect of partially wet-surface condition on the performance of fin-tube heat exchanger. Int J Numer Methods Heat Fluid Flow. 2019;1:1. https://doi.org/10.1108/HFF-07-2018-0362.
2. Chougule SS, Sahu SK, Pise AT. Thermal performance of two phase thermosyphon flat-plate solar collectors using nanofluid. J Sol Energy Eng. 2013;136:014503. https://doi.org/10.1115/1.4025591.
3. Aghayari R, Maddah H, Zarei M, Dehghani M, Kaskari Mahalle SG. Heat transfer of nanofluid in a double pipe heat exchanger. Int Sch Res Not. 2014;2014:1–7. https://doi.org/10.1155/2014/736424.
4. Webb RL, Kim N-H. Principles of enhanced heat transfer. New York: Taylor and Francis; 2005.
5. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2017;75:451–60. https://doi.org/10.1016/J.RSER.2016.11.010.
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Developing a machine learning model for heat pipes considering different input features;International Journal of Thermal Sciences;2025-02
2. Dependence of critical heat flux in vertical flow systems on dimensional and dimensionless parameters using machine learning;International Journal of Heat and Mass Transfer;2024-06
3. Machine learning methods for modeling nanofluid flows: a comprehensive review with emphasis on compact heat transfer devices for electronic device cooling;Journal of Thermal Analysis and Calorimetry;2024-06
4. Experimental and numerical investigation of a solar thermocline system for domestic water heating applications;Journal of Thermal Analysis and Calorimetry;2024-04-29
5. Recent progress of artificial intelligence for liquid-vapor phase change heat transfer;npj Computational Materials;2024-03-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3