Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation

Author:

Ramos Carmen M.ORCID,Curran Sean P.ORCID

Abstract

AbstractMolecular homeostats play essential roles across all levels of biological organization to ensure a return to normal function after responding to abnormal internal and environmental events. SKN-1 is an evolutionarily conserved cytoprotective transcription factor that is integral for the maintenance of cellular homeostasis upon exposure to a variety of stress conditions. Despite the essentiality of turning on SKN-1/NRF2 in response to exogenous and endogenous stress, animals with chronic activation of SKN-1 display premature loss of health with age, and ultimately, diminished lifespan. Previous genetic models of constitutive SKN-1 activation include gain-of-function alleles of skn-1 and loss-of-function alleles of wdr-23 that impede the turnover of SKN-1 by the ubiquitin proteasome. Here, we define a novel gain-of-function mutation in the xrep-4 locus that results in constitutive activation of SKN-1 in the absence of stress. Although each of these genetic mutations results in continuously unregulated transcriptional output from SKN-1, the physiological consequences of each model on development, stress resistance, reproduction, lipid homeostasis, and lifespan are distinct. Here, we provide a comprehensive assessment of the differential healthspan impacts across multiple models of constitutive SKN-1 activation. Although our results reveal the universal need to reign in the uncontrolled activity of cytoprotective transcription factors, we also define the unique signatures of each model of constitutive SKN-1 activation, which provides innovative solutions for the design of molecular “off-switches” of unregulated transcriptional homeostats.

Funder

National Institute on Aging

University of Southern California

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3