Abstract
AbstractDeveloping cultivars that use nitrogen more efficiently is a sustainable strategy for reducing nitrogen use in crop production. To assess the genetic diversity for nitrogen use efficiency (NUE) and related traits in potato, a total of 97 (88 for the Western-European market and 9 Ethiopian) cultivars were evaluated at two nitrogen levels (40 kg/ha and 120 kg/ha) for 24 quantitative traits in Debre-Tabor and Injibara (Ethiopia) in the 2013 main rainy season (June to September). Highly significant variation was found among genotypes for almost all measured traits. Plant height, NUE, tuber yield, and yield-related traits and model parameters for canopy development (maximum canopy covers area under the canopy curve) were significantly affected by N levels across locations. Dutch cultivars had more rapid initial canopy development and matured earlier than the Ethiopian cultivars at both N levels and locations. A hierarchical cluster analysis grouped the cultivars in 9 and 11 genetically distinct classes at low and high N, respectively. The genetic component accounted for a large portion of the phenotypic variation for plant height, tuber number per plant, average tuber weight, and NUE under both N regimes, as indicated by a high heritability. Strong phenotypic correlations were observed between NUE and tuber number per plant, days to maturity, tuber dry matter %, maximum canopy cover, and area under the canopy curve under both low and high N conditions. The result is indicative to set the best parental line selection criteria for crossing purpose and utilize the cultivars for further potato NUE breeding programmes.
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Food Science,Agronomy and Crop Science,Food Science
Reference52 articles.
1. Bänzinger M, Cooper M (2001) Breeding for low input conditions and consequences for participatory plant breeding: examples from tropical maize and wheat. Euphytica 122:503–519
2. Baye BG, Ravishankar H, Singh HA (2005) Variability and association of tuber yield and related traits in potato. Ethiopian J Agri Sc 18:103–121
3. Bertin P, Gallais A (2001) Physiological and genetic basis of nitrogen use efficiency in maize. I Agro-Physiol Results Maydica 45:53–66
4. Bradshaw JE (2009) A genetic perspective on yield plateau in potato. Potato J 36:79–94
5. Burns IG (2006). Assessing N fertilizer requirements and the reliability of different recommendation systems. Acta Hort. pp. 35-48.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献