Optimized Deep Learning for Potato Blight Detection Using the Waterwheel Plant Algorithm and Sine Cosine Algorithm

Author:

Elshewey Ahmed M.,Tawfeek Sayed M.,Alhussan Amel Ali,Radwan MarwaORCID,Abed Amira Hassan

Abstract

AbstractPotato blight, sometimes referred to as late blight, is a deadly disease that affects Solanaceae plants, including potato. The oomycete Phytophthora infestans is causal agent, and it may seriously damage potato crops, lowering yields and causing financial losses. To ensure food security and reduce economic losses in agriculture, potato diseases must be identified. The approach we have proposed in our study may provide a reliable and efficient solution to improve potato late blight classification accuracy. For this purpose, we used the ResNet-50, GoogLeNet, AlexNet, and VGG19Net pre-trained models. We used the AlexNet model for feature extraction, which produced the best results. After extraction, we selected features using ten optimization algorithms in their binary format. The Binary Waterwheel Plant Algorithm Sine Cosine (WWPASC) achieved the best results amongst the ten algorithms, and we performed statistical analysis on the selected features. Five machine learning models—Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Support Vector Machine (SVM), and K-Nearest Neighbour (KNN)—were used to train the chosen features. The most accurate model was the MLP model. The hyperparameters of the MLP model were optimized using the Waterwheel Plant Algorithm Sine Cosine (WWPASC). The results indicate that the suggested methodology (WWPASC-MLP) outperforms four other optimization techniques, with a classification accuracy of 99.5%.

Funder

Delta University for Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3