Abstract
AbstractSmart windows are an important technology in terms of energy saving potential in the building sector due to their ability to control visible light and thermal radiation. The essential component of this type of window glazing is an electrochromic thin film. In addition to the widely established tungsten oxide as the optically active material, in particular the counter electrode offers significant potential for improving the overall device performance. In this study, tantalum vanadium oxide films are prepared by reactive radio-frequency sputtering on fluorine-doped tin oxide substrates and optimized in terms of their spectro-electrochemical properties as ion storage layer. We show that an oxide-based tantalum-vanadium alloy is a promising approach to address the open challenges of pure vanadium pentoxide. The coatings exhibit color neutrality in combination with a high transmittance of up to 80% in the as-prepared state and suitable optical transmittance switching. Additionally, we find both a sufficient stability upon cycling and a suitable charge density of about 35 mC cm−2. Thus, the presented oxide-based alloy offers a beneficial performance as an ion storage layer in electrochromic devices.
Funder
Deutsche Forschungsgemeinschaft
Justus-Liebig-Universität Gießen
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献