Abstract
AbstractThe current study presents a new class of functional derivatives (1–3) consisting of a dicationic viologen (4,4’-bipyridinium unit) (V2+) capped by nucleobases thymine (NB1), adenine (NB2), thymine/adenine (NB1, NB2), and ion-paired with amphiphilic anion 3,4,5-tris(dodecyloxy)benzene sulfonate (DOBS−). The target of our work focuses on the design and synthesis of molecular building blocks in which three different functionalities are combined: chromophore (V2+ unit), molecular recognition (NB unit), and thermotropic liquid crystal (DOBS unit). The resulted materials exhibit liquid crystalline properties at ambient temperature with significant particularities-induced by nucleobases in the mesogen structure. Structure–properties relationship study focuses on providing knowledge about (1) how the thermotropic, redox properties, thermochromism, or ionic conductive properties are influenced by the presence of purinic or pyrimidinic nucleobases, and (2) how effective is their ability to self-assembly by hydrogen bonding in nonpolar solvents. The presence of nucleobases has been proved to have a substantial impact on electron transfer rate during the reduction of viologen moieties by intermolecular aggregation. Ionic conductivity and thermochromic properties of derivatives 1–3 were investigated and compared to a non-containing nucleobase analog methyl viologen with 3,4,5-tris(dodecyloxy)benzene sulfonate anion (MV) as reference.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献