Abstract
AbstractNanoscale phase separations, and effects of these, were studied for thick super duplex stainless steel products by atom probe tomography and mechanical testing. Although nanoscale phase separations typically occur during long-time service at intermediate temperatures (300–500° C, our results show that slowly cooled products start to develop Fe and Cr separation and/or precipitation of Cu-rich particles already during fabrication. Copper significantly slowed down the kinetics at the expense of Cu-rich particle precipitation, where the high-copper material subjected to hot isostatic pressing (HIP), with Δt500–400 of 160 s and the low-copper hot-rolled plate with Δt500–400 of 2 s had the same level of Fe and Cr separation. The phase separations resulted in lower toughness and higher hardness of the HIP material than for hot-rolled plate. Therefore, both local cooling rate dependent and alloy composition governed variations of phase separations can be expected in as-fabricated condition.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献