Spray-flame-synthesized Sr- and Fe-substituted LaCoO3 perovskite nanoparticles with enhanced OER activities

Author:

Alkan BarisORCID,Braun MichaelORCID,Landrot GautierORCID,Rüdiger OlafORCID,Andronescu CorinaORCID,DeBeer SerenaORCID,Schulz ChristofORCID,Wiggers HartmutORCID

Abstract

AbstractLa1–xSrxCoO3 (x = 0, 0.1, 0.2) and LaCo0.8Fe0.2O3 perovskite nanoparticles were synthesized by spray-flame synthesis, and their electrocatalytic water oxidation activity was evaluated in the prepared state. Highly crystalline, rhombohedrally distorted cubic structures of the cobaltite perovskites were confirmed by STEM and XRD analyses. The decreased JT distortions were observed in the cobaltite perovskite structure upon substitution with Sr, while orthorhombic distortions in Fe-substituted perovskites could explain the changes in their Raman spectra. Debye–Waller factors and coordination numbers from fitted EXAFS data indicate more disordered crystalline structures upon Sr substitution and a lower Co–O coordination number at 20 at% Sr. Thermal characterization of the catalysts by STA coupled with QMS shows higher mass losses in Sr-substituted catalysts, and these results were associated with a higher concentration of carbonate species in these catalysts, which was also confirmed by XPS measurements. Both Fe and Sr substitution lead to higher catalytic OER activity of the cobaltite perovskites with lower overpotentials of about 30–50 mV. The cobaltite perovskite catalyst substituted with 20 at% Sr exhibited the highest OER activity and stable electrocatalytic performance at moderate conditions.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3