Abstract
AbstractSilane-functionalized graphene nanoplatelets (GNPs) were prepared using a newly developed approach based upon a simple two-step strategy. The effect of their dispersion and interfacial bonding on the mechanical properties and thermal conductivity of reinforced silicone rubber (SR) was investigated. It was found by Raman mapping that the silane-functionalized GNPs could be dispersed uniformly into the SR matrix, leading to an increase of up to 25% in Young’s modulus at only 2 parts per hundred rubber (phr) loading and a considerable enhancement of up to 150% in the thermal conductivity at 5-phr loading. Both the Young’s modulus and thermal conductivity experimental results were found to be in agreement with the values predicted using theoretical models.
Graphical abstract
Funder
china scholarship council
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献