Abstract
AbstractThe application of ceramics in advanced functional applications often requires thicknesses below a few hundred micrometers, rendering an assessment of the materials’ strength particularly challenging. In this work, different testing methods are combined to elucidate the effect of the volume and the surface area of the specimens under tensile loading on the fracture strength of Alumina of different purities and Spinel. A ball-on-3-ball test has been implemented into a micro-indentation system permitting as novelty a high control and acquisition of loads and displacements to study the biaxial fracture stress of thin specimens. In addition, ring-on-ring tests are carried out for thicker specimens. Weibull statistics is applied to analyze the fracture stresses. Considering all individual data sets obtained using the two testing methods, the effective volume approach appears most suitable for the materials tested. This conclusion is confirmed by fractographic analysis, where pores could be identified as the main failure initiating defect. The combination of a micro-indentation system and a ball-on-3-ball test as micro-and macro-scale biaxial tests represents an easy, fast and reliable methodology to investigate small scale ceramic materials.
Funder
Bundesministerium für Bildung und Forschung
Forschungszentrum Jülich GmbH
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献