Abstract
AbstractWe prove Sobolev regularity for distributional solutions to the Dirichlet problem for generators of 2s-stable processes and exterior data, inhomogeneity in weighted $$L^2$$
L
2
-spaces. This class of operators includes the fractional Laplacian. For these rough exterior data the theory of weak variational solutions is not applicable. Our regularity estimate is robust in the limit $$s\rightarrow 1-$$
s
→
1
-
which allows us to recover the local theory.
Funder
Deutsche Forschungsgemeinschaft
Universität Bielefeld
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)
2. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for $$W^{s, p}$$ when $$s\uparrow 1$$ and applications. J. Anal. Math. 87, 77–101 (2002). (Dedicated to the memory of Thomas H. Wolff)
3. Bogdan, K., Grzywny, T., Pietruska-Pałuba, K., Rutkowski, A.: Extension and trace for nonlocal operators. J. Math. Pures Appl. 9(137), 33–69 (2020)
4. Bass, R.F., Kassmann, M.: Hölder continuity of harmonic functions with respect to operators of variable order. Commun. Part. Differ. Equ. 30(7–9), 1249–1259 (2005)
5. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123(1), 43–80 (1997)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献