Abstract
AbstractWe prove local Lipschitz regularity for local minimisers of $$\begin{aligned} W^{1,1}(\Omega )\ni v\mapsto \int _\Omega F(Dv)\, dx \end{aligned}$$
W
1
,
1
(
Ω
)
∋
v
↦
∫
Ω
F
(
D
v
)
d
x
where $$\Omega \subseteq {\mathbb {R}}^N$$
Ω
⊆
R
N
, $$N\ge 2$$
N
≥
2
and $$F:{\mathbb {R}}^N\rightarrow {\mathbb {R}}$$
F
:
R
N
→
R
is a quasiuniformly convex integrand in the sense of Kovalev and Maldonado (Ill J Math 49:1039–1060, 2005), i. e. a convex $$C^1$$
C
1
-function such that the ratio between the maximum and minimum eigenvalues of $$D^2F$$
D
2
F
is essentially bounded. This class of integrands includes the standard singular/degenerate functions $$F(z)=|z|^p$$
F
(
z
)
=
|
z
|
p
for any $$p>1$$
p
>
1
and arises as the closure, with respect to a natural convergence, of the strongly elliptic integrands of the Calculus of Variations.
Funder
Deutsche Forschungsgemeinschaft
University of Catania
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Universität Augsburg
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference41 articles.
1. Giaquinta, M.: Growth conditions and regularity, a counterexample. Manuscr. Math. 59, 245–248 (1987). https://doi.org/10.1007/BF01158049
2. Marcellini, P.: Un esemple de solution discontinue d’un probléme variationnel dans le case scalaire. Ist. Mat. U. Dini no. 11, Firenze (1987). http://web.math.unifi.it/users/marcell/ricerca/elenco_lavori.html
3. Kovalev, L.V., Maldonado, D.: Mappings with convex potentials and the quasiconformal Jacobian problem. Ill. J. Math. 49, 1039–1060 (2005)
4. Kovalev, L.V.: Quasiconformal geometry of monotone mappings. J. Lond. Math. Soc. 75, 391–408 (2007). https://doi.org/10.1112/jlms/jdm008
5. Bonk, M., Heinonen, J., Saksman, E.: The quasiconformal Jacobian problem. In: The Tradition of Ahlfors and Bers, III, Contemporary in Mathematics, vol. 355, pp. 77–96. American Mathematical Society, Providence (2004)