The fractional $$p\,$$-biharmonic systems: optimal Poincaré constants, unique continuation and inverse problems

Author:

Kar ManasORCID,Railo JesseORCID,Zimmermann PhilippORCID

Abstract

AbstractThis article investigates nonlocal, quasilinear generalizations of the classical biharmonic operator $$(-\Delta )^2$$ ( - Δ ) 2 . These fractional p -biharmonic operators appear naturally in the variational characterization of the optimal fractional Poincaré constants in Bessel potential spaces. We study the following basic questions for anisotropic fractional p -biharmonic systems: existence and uniqueness of weak solutions to the associated interior source and exterior value problems, unique continuation properties, monotonicity relations, and inverse problems for the exterior Dirichlet-to-Neumann maps. Furthermore, we show the UCP for the fractional Laplacian in all Bessel potential spaces $$H^{t,p}$$ H t , p for any $$t\in {\mathbb R}$$ t R , $$1 \le p < \infty $$ 1 p < and $$s \in {\mathbb R}_+ {\setminus } {\mathbb N}$$ s R + \ N : If $$u\in H^{t,p}({\mathbb R}^n)$$ u H t , p ( R n ) satisfies $$(-\Delta )^su=u=0$$ ( - Δ ) s u = u = 0 in a nonempty open set V, then $$u\equiv 0$$ u 0 in $${\mathbb R}^n$$ R n . This property of the fractional Laplacian is then used to obtain a UCP for the fractional p -biharmonic systems and plays a central role in the analysis of the associated inverse problems. Our proofs use variational methods and the Caffarelli–Silvestre extension.

Funder

Väisälän Rahasto

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference108 articles.

1. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4(417–453), 1962 (1962)

2. Alessandrini, G.: Critical points of solutions to the $$p$$-Laplace equation in dimension two. Boll. Un. Mat. Ital. A (7) 1(2), 239–246 (1987)

3. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 9(36), 235–249 (1957)

4. Antil, H., Rautenberg, C.N., Schikorra, A.: On a fractional version of a Murat compactness result and applications. SIAM J. Math. Anal. 53(3), 3158–3187 (2021)

5. Alessandrini, G., Sigalotti, M.: Geometric properties of solutions to the anisotropic $$p$$-Laplace equation in dimension two. Ann. Acad. Sci. Fenn. Math. 26(1), 249–266 (2001)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3