Abstract
AbstractWe consider the onset of pattern formation in an ultrathin ferromagnetic film of the form $$\Omega _t:= \Omega \times [0,t]$$
Ω
t
:
=
Ω
×
[
0
,
t
]
for $$\Omega \Subset \mathbb {R}^2$$
Ω
⋐
R
2
with preferred perpendicular magnetization direction. The relative micromagnetic energy is given by $$\begin{aligned} \mathcal {E}[M]= \int _{\Omega _t} d^2 |\nabla M|^2+ Q \int _{\Omega _t} (M_1^2+M_2^2) + \int _{\mathbb {R}^3} |\mathcal {H}(M)|^2 - \int _{\mathbb {R}^3} |\mathcal {H}(e_3 \chi _{\Omega _t})|^2, \end{aligned}$$
E
[
M
]
=
∫
Ω
t
d
2
|
∇
M
|
2
+
Q
∫
Ω
t
(
M
1
2
+
M
2
2
)
+
∫
R
3
|
H
(
M
)
|
2
-
∫
R
3
|
H
(
e
3
χ
Ω
t
)
|
2
,
describing the energy difference for a given magnetization $$M: \mathbb {R}^3 \rightarrow \mathbb {R}^3$$
M
:
R
3
→
R
3
with $$|M| = \chi _{\Omega _t}$$
|
M
|
=
χ
Ω
t
and the uniform magnetization $$e_3 \chi _{\Omega _t}$$
e
3
χ
Ω
t
. For $$t \ll d$$
t
≪
d
, we derive the scaling of the minimal energy and a BV-bound in the critical regime, where the base area of the film has size of order $$|\Omega |^{{\frac{1}{2}}} \sim (Q-1)^{{-\frac{1}{2}}} d e^{\frac{2\pi d}{t} \sqrt{Q-1}}$$
|
Ω
|
1
2
∼
(
Q
-
1
)
-
1
2
d
e
2
π
d
t
Q
-
1
. We furthermore investigate the onset of non-trivial pattern formation in the critical regime depending on the size of the rescaled film.
Funder
Deutsche Forschungsgemeinschaft
Structure Excellence Cluster
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference40 articles.
1. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322(2), 515–557 (2013)
2. Alberti, G., Choksi, R., Otto, F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22(2), 569–605 (2009)
3. Allenspach, R., Stampanoni, M., Bischof, A.: Magnetic domains in thin epitaxial Co–Au 111 films. Phys. Rev. Let 65(26), 3344–3347 (1990)
4. Anzellotti, G., Baldo, S., Visintin, A.: Asymptotic behavior of the Landau–Lifshitz model of ferromagnetism. Appl. Math. Optim. 23, 171–192 (1991)
5. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Part. Diff. eq., pp. 439–455. IOS, Amsterdam (2001)