Abstract
AbstractWe determine the optimal Hölder exponent in Massari’s regularity theorem for sets with variational mean curvature in$$\textrm{L}^p$$Lp. In fact, we obtain regularity with improved exponents and at the same time provide sharp counterexamples.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference25 articles.
1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)
2. Ambrosio, L., Paolini, E.: Partial regularity for quasi minimizers of perimeter. Ric. Mat. 48, 167–186 (1999)
3. Barozzi, E.: The curvature of a set with finite area. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. IX. Ser. Rend. Lincei Mat. Appl. 5, 149–159 (1994)
4. Barozzi, E., Massari, U.: A new functional for the Calculus of Variations, involving the variational mean curvature of sets in $${\mathbb{R} ^{n}}$$. Manuscr. Math. 157, 1–12 (2018)
5. Barozzi, E., Tamanini, I.: Penalty methods for minimal surfaces with obstacles. Ann. Mat. Pura Appl. IV. Ser. 152, 139–157 (1988)