Author:
He Xiaoming,Meng Yuxi,Squassina Marco
Abstract
AbstractIn this paper, we study the fractional critical Schrödinger–Poisson system $$\begin{aligned}{\left\{ \begin{array}{ll} (-\Delta )^su +\lambda \phi u= \alpha u+\mu |u|^{q-2}u+|u|^{2^*_s-2}u,&{}~~ \hbox {in}~{\mathbb {R}}^3,\\ (-\Delta )^t\phi =u^2,&{}~~ \hbox {in}~{\mathbb {R}}^3,\end{array}\right. } \end{aligned}$$
(
-
Δ
)
s
u
+
λ
ϕ
u
=
α
u
+
μ
|
u
|
q
-
2
u
+
|
u
|
2
s
∗
-
2
u
,
in
R
3
,
(
-
Δ
)
t
ϕ
=
u
2
,
in
R
3
,
having prescribed mass $$\begin{aligned} \int _{{\mathbb {R}}^3} |u|^2dx=a^2,\end{aligned}$$
∫
R
3
|
u
|
2
d
x
=
a
2
,
where $$ s, t \in (0, 1)$$
s
,
t
∈
(
0
,
1
)
satisfy $$2\,s+2t> 3, q\in (2,2^*_s), a>0$$
2
s
+
2
t
>
3
,
q
∈
(
2
,
2
s
∗
)
,
a
>
0
and $$\lambda ,\mu >0$$
λ
,
μ
>
0
parameters and $$\alpha \in {\mathbb {R}}$$
α
∈
R
is an undetermined parameter. For this problem, under the $$L^2$$
L
2
-subcritical perturbation $$\mu |u|^{q-2}u, q\in (2,2+\frac{4\,s}{3})$$
μ
|
u
|
q
-
2
u
,
q
∈
(
2
,
2
+
4
s
3
)
, we derive the existence of multiple normalized solutions by means of the truncation technique, concentration-compactness principle and the genus theory. In the $$L^2$$
L
2
-supercritical perturbation $$\mu |u|^{q-2}u,q\in (2+\frac{4\,s}{3}, 2^*_s)$$
μ
|
u
|
q
-
2
u
,
q
∈
(
2
+
4
s
3
,
2
s
∗
)
, we prove two different results of normalized solutions when parameters $$\lambda ,\mu $$
λ
,
μ
satisfy different assumptions, by applying the constrained variational methods and the mountain pass theorem. Our results extend and improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15–30, 2016); and of Teng (J Differ Equ 261:3061–3106, 2016), since we are concerned with normalized solutions.
Funder
Natural Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC