Limit profiles for singularly perturbed Choquard equations with local repulsion

Author:

Liu Zeng,Moroz VitalyORCID

Abstract

AbstractWe study Choquard type equation of the form where $$N\ge 3$$ N 3 , $$I_\alpha $$ I α is the Riesz potential with $$\alpha \in (0,N)$$ α ( 0 , N ) , $$p>1$$ p > 1 , $$q>2$$ q > 2 and $$\varepsilon \ge 0$$ ε 0 . Equations of this type describe collective behaviour of self-interacting many-body systems. The nonlocal nonlinear term represents long-range attraction while the local nonlinear term represents short-range repulsion. In the first part of the paper for a nearly optimal range of parameters we prove the existence and study regularity and qualitative properties of positive groundstates of $$(P_0)$$ ( P 0 ) and of $$(P_\varepsilon )$$ ( P ε ) with $$\varepsilon >0$$ ε > 0 . We also study the existence of a compactly supported groundstate for an integral Thomas–Fermi type equation associated to $$(P_{\varepsilon })$$ ( P ε ) . In the second part of the paper, for $$\varepsilon \rightarrow 0$$ ε 0 we identify six different asymptotic regimes and provide a characterisation of the limit profiles of the groundstates of $$(P_\varepsilon )$$ ( P ε ) in each of the regimes. We also outline three different asymptotic regimes in the case $$\varepsilon \rightarrow \infty $$ ε . In one of the asymptotic regimes positive groundstates of $$(P_\varepsilon )$$ ( P ε ) converge to a compactly supported Thomas–Fermi limit profile. This is a new and purely nonlocal phenomenon that can not be observed in the local prototype case of $$(P_\varepsilon )$$ ( P ε ) with $$\alpha =0$$ α = 0 . In particular, this provides a justification for the Thomas–Fermi approximation in astrophysical models of self-gravitating Bose–Einstein condensate.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3