Abstract
AbstractIf $$u: \Omega \subset \mathbb {R}^d \rightarrow \textrm{X}$$
u
:
Ω
⊂
R
d
→
X
is a harmonic map valued in a metric space $$\textrm{X}$$
X
and $$\textsf{E}: \textrm{X}\rightarrow \mathbb {R}$$
E
:
X
→
R
is a convex function, in the sense that it generates an $$\textrm{EVI}_0$$
EVI
0
-gradient flow, we prove that the pullback $$\textsf{E}\circ u: \Omega \rightarrow \mathbb {R}$$
E
∘
u
:
Ω
→
R
is subharmonic. This property was known in the smooth Riemannian manifold setting or with curvature restrictions on $$\textrm{X}$$
X
, while we prove it here in full generality. In addition, we establish generalized maximum principles, in the sense that the $$L^q$$
L
q
norm of $$\textsf{E}\circ u$$
E
∘
u
on $$\partial \Omega $$
∂
Ω
controls the $$L^p$$
L
p
norm of $$\textsf{E}\circ u$$
E
∘
u
in $$\Omega $$
Ω
for some well-chosen exponents $$p \ge q$$
p
≥
q
, including the case $$p=q=+\infty $$
p
=
q
=
+
∞
. In particular, our results apply when $$\textsf{E}$$
E
is a geodesically convex entropy over the Wasserstein space, and thus settle some conjectures of Brenier (Optimal transportation and applications (Martina Franca, 2001), volume 1813 of lecture notes in mathematics, Springer, Berlin, pp 91–121, 2003).
Funder
Fondation Sciences Mathématiques de Paris
Fundação para a Ciência e a Tecnologia
Università Cattolica del Sacro Cuore
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Ambrosio, L., Brena, C.: Stability of a class of action functionals depending on convex functions. Discrete Contin. Dyn. Syst. (2021). https://doi.org/10.3934/dcds.2022055
2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Courier Corporation, Chelmsford (2000)
3. Lectures in Mathematics ETH Zürich;L Ambrosio,2008
4. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces, vol. 25. Oxford University Press, Oxford (2004)
5. Baradat, A., Monsaingeon, L.: Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport. Arch. Ration. Mech. Anal. 235(2), 1357–1403 (2020)