Quaternary Ammonium Salts of Cationic Lipopeptides with Lysine Residues — Synthesis, Antimicrobial, Hemolytic and Cytotoxic Activities

Author:

Sikora Karol,Jędrzejczak Jakub,Bauer Marta,Neubauer Damian,Jaśkiewicz Maciej,Szaryńska Magdalena

Abstract

AbstractUltrashort cationic lipopeptides (USCLs) and quaternary ammonium salts constitute two groups of cationic surfactants with high antimicrobial activity. This study aimed to investigate the influence of quaternization of the amino group of the lysine side chain in USCLs on their antimicrobial, hemolytic and cytotoxic activities. To do this, two series of lipopeptides were synthesized, USLCs and their quaternized analogues containing trimethylated lysine residues — qUSCLs (quaternized ultrashort cationic lipopeptides). Quaternization was performed on a resin during a standard solid-phase peptide synthesis with CH3I as the methylating agent. According to our knowledge, this is the first study presenting on-resin peptide quaternization. The lipopeptides were tested for their antibacterial and antifungal activities against the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella aerogenes) bacteria and Candida glabrata yeast-like fungus. Most of the compounds proved to be active antimicrobial agents with enhanced activity against Gram-positive strains and fungi and a lower against Gram-negative species. In addition, the antimicrobial activity of lipopeptides was increasing with an increase in hydrophobicity but qUSCLs exhibited usually a poorer antimicrobial activity than their parent molecules. Furthermore, the toxicity against red blood cells and human keratinocytes was assessed. It’s worth emphasizing that qUSCLs were less toxic than the parent molecules of comparative hydrophobicity. The results of the study proved that qUSCLs can offer a higher selectivity to pathogens over human cells than that of USCLs. Last but not least, quaternization of the peptides could increase their solubility and therefore their bioavailability and utility.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Molecular Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3