Machine learning based approach for the interpretation of engineering geophysical sounding logs

Author:

Abordán ArmandORCID,Szabó Norbert PéterORCID

Abstract

AbstractIn this paper, a set of machine learning (ML) tools is applied to estimate the water saturation of shallow unconsolidated sediments at the Bátaapáti site in Hungary. Water saturation is directly calculated from the first factor extracted from a set of direct push logs by factor analysis. The dataset observed by engineering geophysical sounding tools as special variants of direct-push probes contains data from a total of 12 shallow penetration holes. Both one- and two-dimensional applications of the suggested method are presented. To improve the performance of factor analysis, particle swarm optimization (PSO) is applied to give a globally optimized estimate for the factor scores. Furthermore, by a hyperparameter estimation approach, some control parameters of the utilized PSO algorithm are automatically estimated by simulated annealing (SA) to ensure the convergence of the procedure. The result of the suggested ML-based log analysis method is compared and verified by an independent inversion estimate. The study shows that the PSO-based factor analysis aided by hyperparameter estimation provides reliable in situ estimates of water saturation, which may improve the solution of environmental end engineering problems in shallow unconsolidated heterogeneous formations.

Funder

National Research, Development and Innovation Office

University of Miskolc

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geophysics,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3