In-queue priority purchase: a dynamic game approach

Author:

Wang ZhongbinORCID,Yang LuyiORCID,Cui ShiliangORCID,Wang Jinting

Abstract

AbstractPay-for-priority is a common practice in congestion-prone service systems. The extant literature on this topic restricts attention to the case where the only epoch for customers to purchase priority is upon arrival, and if customers choose not to upgrade when they arrive, they cannot do so later during their wait. A natural alternative is to let customers pay and upgrade to priority at any time during their stay in the queue, even if they choose not to do so initially. This paper builds a queueing-game-theoretic model that explicitly captures self-interested customers’ dynamic in-queue priority-purchasing behavior. When all customers (who have not upgraded yet) simultaneously decide whether to upgrade, we find in our model that pure-strategy equilibria do not exist under some intuitive criteria, contrasting the findings in classical models where customers can only purchase priority upon arrival. However, when customers sequentially decide whether to upgrade, threshold-type pure-strategy equilibria may exist. In particular, under sufficiently light traffic, if the number of ordinary customers accumulates to a certain threshold, then it is always the second last customer who upgrades, but in general, it could be a customer from another position, and the queue-length threshold that triggers an upgrade can also vary with the traffic intensity. Finally, we find that in-queue priority purchase subject to the sequential rule yields less revenue than upon-arrival priority purchase in systems with small buffers.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equilibrium analysis of a partially observable priority queue;Computers & Industrial Engineering;2023-08

2. Distance-Based Service Priority: An Innovative Mechanism to Increase System Throughput and Social Welfare;Manufacturing & Service Operations Management;2023-01

3. Sequential Bidding for Merging in Algorithmic Traffic;Manufacturing & Service Operations Management;2023-01

4. In-Queue Priority Purchase;Innovative Priority Mechanisms in Service Operations;2023

5. A Brief Review of Research on Priority Queues with Self-Interested Customers;Innovative Priority Mechanisms in Service Operations;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3