Abstract
AbstractPay-for-priority is a common practice in congestion-prone service systems. The extant literature on this topic restricts attention to the case where the only epoch for customers to purchase priority is upon arrival, and if customers choose not to upgrade when they arrive, they cannot do so later during their wait. A natural alternative is to let customers pay and upgrade to priority at any time during their stay in the queue, even if they choose not to do so initially. This paper builds a queueing-game-theoretic model that explicitly captures self-interested customers’ dynamic in-queue priority-purchasing behavior. When all customers (who have not upgraded yet) simultaneously decide whether to upgrade, we find in our model that pure-strategy equilibria do not exist under some intuitive criteria, contrasting the findings in classical models where customers can only purchase priority upon arrival. However, when customers sequentially decide whether to upgrade, threshold-type pure-strategy equilibria may exist. In particular, under sufficiently light traffic, if the number of ordinary customers accumulates to a certain threshold, then it is always the second last customer who upgrades, but in general, it could be a customer from another position, and the queue-length threshold that triggers an upgrade can also vary with the traffic intensity. Finally, we find that in-queue priority purchase subject to the sequential rule yields less revenue than upon-arrival priority purchase in systems with small buffers.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献